On three-dimensional Weyl structures with reduced holonomy

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Holonomy of Tame Weyl Structures

A Weyl structure on a compact conformal manifold is not complete in general. If, however, the life-time of incomplete geodesics can be controlled on compact subsets of the tangent bundle, the Weyl connection is called tame. We prove that every closed, non-exact, tame Weyl structure on a compact conformal manifold is either flat, or has irreducible holonomy, generalizing an analogous statement f...

متن کامل

Einstein–Maxwell–Dilaton metrics from three–dimensional Einstein–Weyl structures

A class of time dependent solutions to (3 + 1) Einstein–Maxwell-dilaton theory with attractive electric force is found from Einstein–Weyl structures in (2+1) dimensions corresponding to dispersionless Kadomtsev–Petviashvili and SU(∞) Toda equations. These solutions are obtained from time–like Kaluza–Klein reductions of (3 + 2) solitons. ∗email [email protected]

متن کامل

On 2-Dimensional Holonomy

We define the fundamental strict categorical group P2(M, ∗) of a based smooth manifold (M, ∗) and construct categorical holonomies, being smooth morphisms P2(M, ∗) → C(G), where C(G) is a Lie categorical group, by using a notion of categorical connections, which we define. As a result, we are able to define Wilson spheres in this context.

متن کامل

On Two-Dimensional Holonomy

We define the thin fundamental categorical group P2(M, ∗) of a based smooth manifold (M, ∗) as the categorical group whose objects are rank-1 homotopy classes of based loops on M , and whose morphisms are rank2 homotopy classes of homotopies between based loops on M . Here two maps are rank-n homotopic, when the rank of the differential of the homotopy between them equals n. Let C(G) be a Lie c...

متن کامل

4 - Dimensional ( Para ) - Kähler – Weyl Structures

We give an elementary proof of the fact that any 4-dimensional para-Hermitian manifold admits a unique para-Kähler–Weyl structure. We then use analytic continuation to pass from the para-complex to the complex setting and thereby show that any 4-dimensional pseudo-Hermitian manifold also admits a unique Kähler–Weyl structure.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Classical and Quantum Gravity

سال: 2006

ISSN: 0264-9381,1361-6382

DOI: 10.1088/0264-9381/23/3/003